Teaching Plan (2019-2020) Semester - VI

Name of the Course : Complex Analysis Subject code : MC1761

No. of hours per week	Credit	Total No. of hours	Marks
6	5	90	100

Objectives

- 1. To introduce the basic concepts of differentiation and integration of complex functions.
- 2. To use these concepts in higher studies.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	understand the geometric representation of complex numbers	PSO- 1	U
CO- 2	use differentiation rules to compute derivatives and express complex- differentiable functions as power series	PSO- 4	Е
CO- 3	compute line integrals by using Cauchy's integral theorem and formula	PSO-3	E
CO -4	identify the isolated singularities of a function and determine whether they are removable, poles or essential	PSO-1	U
CO- 5	evaluate definite integrals by using residues theorem	PSO-8	E

Unit	Module	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
I	1	Complex numbers – conjugation and modulus	5	To prove C is a field and some inequalities	Lecture	Assignment
	2	Geometrical representation of complex numbers and n th roots of complex numbers	5	To find magnitude, argument and n th roots of complex numbers	Lecture, Group discussion	Test
	3	Circles and straight lines – general equations and problems	4	To obtain necessary and sufficient condition for the concept inverse points and reflection points	Lecture	Quiz
	4	Regions in the complex plane - definitions and examples	2	To identify regions in ℂ	Lecture with PPT	Assignment
	5	The extended complex plane - definition and problems	2	To determine the point on the sphere that represents the complex plane	Lecture	Test
Π	1	Differentiability – definitions and theorems	3	To analyse basic properties of differentiability	Lecture	Assignment
	2	Cauchy Riemann equations – theorems and examples, Alternate forms of C.R equations – theorems and	7	To get necessary & sufficient condition for differentiability	Lecture	Formative Assessme nt

	3	problems Analytic functions –	5	To discuss some	Lecture	Test
		definition and problems		properties of analytic function		
	4	Harmonic functions – definitions, theorems and problems	7	To find analytic functions	Lecture with group discussion	Assignment
	5	Bilinear transformations – elementary transformation and cross ratio	7	To determine the image of given region under bilinear transformation	Lecture with PPT	Test
III	1	Definite integral – definitions, theorems and examples	4	To evaluate definite integral	Lecture	Assignment
	2	Cauchy's theorem – definition and theorems	5	To prove Cauchy's theorems	Lecture	Test
	3	Cauchy's integral formula – theorems and problems	5	To evaluate integrals	Lecture with group discussion	Test
IV	1	Taylor's series-	5	To expand given function as Taylor's series	Lecture	Assignment

		Taylor's theorem and problems			with group discussion	
	2	Laurent's Series – Laurent's theorem and problems	5	To expand given function as Laurent's series	Lecture	Formative Assessment
	3	Zeros of analytic functions – definition and problems	3	To determine zeros of analytic functions	Lecture	Assignment
	4	Singularities – definitions and examples	2	To find singularity of a given function	Lecture	Test
V	1	Residues –definition, lemmas and problems	5	To find residue of a given function	Lecture	Test
	2	Cauchy's residue theorem – theorems and examples	4	To evaluate given definite integrals	Lecture	Test
	3	Evaluation of definite integrals – method and problems	5	To evaluate given definite integrals	Lecture	Formative Assessment

Course Instructor (Aided): Dr. M. K. Angel Jebitha Mary Course Instructor (S.F): Ms. V. Pincy Kala HoD (Aided): Dr. V.M. Arul Flower HoD (Aided): Ms. J. Anne Mary Leema